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Definition 4.2-1 The covariance of X and Y , denoted by Cov(X ,Y ) or σXY , is
defined by

Cov(X ,Y ) = σXY = E[(X − µX )(Y − µY )] = E(XY )− E(X )E(Y ).

If Cov(X ,Y ) = 0, then we say that X and Y are uncorrelated. X and Y are
uncorrelated if and only if

E(XY ) = E(X )E(Y ).
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Remark 4.2-1 Note that if X and Y are independent, then it can be show that they
are uncorrelated, namely,

independent ⇒ uncorrelated.

However, the converse is not true in general; that is, the fact that X and Y are
uncorrelated does not, in general, imply that they are independent:

independent ⇐× uncorrelated.
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Definition 4.2-2 For two random variables X and Y , the correlation coefficient,
denoted by ρXY , is defined by

ρXY =
Cov(X ,Y )

σXσY
=

σXY

σXσY
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Remark 4.2-2 It can be shown that

|ρ| ≤ 1 or − 1 ≤ ρ ≤ 1.

Remark 4.2-3 Note that the correlation coefficient of X and Y is a measure of
linear dependence between X and Y . The least square regression line (the line that
describes linear relationship between X and Y ) is given by

y = µY + ρXY
σY

σX
(x − µX ) .
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Example 4.2-1 Let X and Y have the joint pmf

f (x , y) =
x + y
32

, x = 1, 2, y = 1, 2, 3, 4.

Find the mean µX and µY , the variances σ2
X and σ2

Y , the correlation coefficient ρ, and
the equation of the least square regression line. Are X and Y independent?
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Example 4.2-1 Let X and Y have the joint pmf

f (x , y) =
x + y
32

, x = 1, 2, y = 1, 2, 3, 4.

Find the mean µX and µY , the variances σ2
X and σ2

Y , the correlation coefficient ρ, and
the equation of the least square regression line. Are X and Y independent?

Ans:
µX = 25/16
µY = 45/16
σ2

X = 63/256
σ2

Y = 295/256
Cov(X ,Y ) = −5/256
ρ = −0.0367 dependent.
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Example 4.2-2 Let X and Y be random variables of the continuous type having the
joint pdf

f (x , y) = 2, 0 ≤ y ≤ x ≤ 1.

(a) Find the marginal pdf of X and Y .
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X , σ

2
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Example 4.2-2 Let X and Y be random variables of the continuous type having the
joint pdf

f (x , y) = 2, 0 ≤ y ≤ x ≤ 1.

(a) Find the marginal pdf of X and Y .
(b) Compute µX , µY , σ

2
X , σ

2
Y ,Cov(X ,Y ), and ρ.

(c) Determine the equation of the least square regression line.
Ans:
(a) f1(x) = 2x for 0 ≤ x ≤ 1; f2(y) = 2(1− y);
(b) µX = E(X ) = 2/3 and µY = E(Y ) = 1/3.
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Exercises from textbook: 4.2-1, 4.2-2, 4.2-3, 4.2-7, 4.2-9.
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