Probability and Statistics I

STAT $3600-Fall\ 2021$

Le Chen lzc0090@auburn.edu

Last updated on

July 4, 2021

Auburn University Auburn AL

Chapter 4. Bivariate Distributions

4.1 Bivariate Distributions of the Discrete Type

- $\$ 4.2 The Correlation Coefficient
- § 4.3 Conditional Distributions
- § 4.4 Bivariate Distributions of the Continuous Type
- § 4.5 The Bivariate Normal Distribution

Chapter 4. Bivariate Distributions

§ 4.1 Bivariate Distributions of the Discrete Type

- $\$ 4.2 The Correlation Coefficient
- § 4.3 Conditional Distributions
- § 4.4 Bivariate Distributions of the Continuous Type
- § 4.5 The Bivariate Normal Distribution

Definition 4.2-1 The *covariance* of X and Y, denoted by Cov(X, Y) or σ_{XY} , is defined by

$$\operatorname{Cov}(X, Y) = \sigma_{XY} = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

If Cov(X, Y) = 0, then we say that X and Y are *uncorrelated*. X and Y are uncorrelated if and only if

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y).$$

Remark 4.2-1 Note that if X and Y are independent, then it can be show that they are uncorrelated, namely,

independent \Rightarrow uncorrelated.

However, the converse is not true in general; that is, the fact that X and Y are uncorrelated does not, in general, imply that they are independent:

independent < uncorrelated.

Definition 4.2-2 For two random variables X and Y, the *correlation coefficient*, denoted by ρ_{XY} , is defined by

$$\rho_{XY} = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

$$|\rho| \leq 1$$
 or $-1 \leq \rho \leq 1$.

Remark 4.2-3 Note that the correlation coefficient of X and Y is a measure of linear dependence between X and Y. The *least square regression line* (the line that describes linear relationship between X and Y) is given by

$$\mathbf{y} = \mu_{\mathbf{Y}} + \rho_{\mathbf{X}\mathbf{Y}} \frac{\sigma_{\mathbf{Y}}}{\sigma_{\mathbf{X}}} \left(\mathbf{x} - \mu_{\mathbf{X}} \right).$$

Example 4.2-1 Let X and Y have the joint pmf

$$f(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} + \mathbf{y}}{32}, \quad \mathbf{x} = 1, 2, \mathbf{y} = 1, 2, 3, 4.$$

Find the mean μ_X and μ_Y , the variances σ_X^2 and σ_Y^2 , the correlation coefficient ρ , and the equation of the least square regression line. Are X and Y independent?

Example 4.2-1 Let X and Y have the joint pmf

$$f(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} + \mathbf{y}}{32}, \quad \mathbf{x} = 1, 2, \mathbf{y} = 1, 2, 3, 4.$$

Find the mean μ_X and μ_Y , the variances σ_X^2 and σ_Y^2 , the correlation coefficient ρ , and the equation of the least square regression line. Are X and Y independent?

Ans: $\mu_X = 25/16$ $\mu_Y = 45/16$ $\sigma_X^2 = 63/256$ $\sigma_Y^2 = 295/256$ Cov(X, Y) = -5/256 $\rho = -0.0367$ dependent.

$$f(\mathbf{x}, \mathbf{y}) = 2, \quad 0 \le \mathbf{y} \le \mathbf{x} \le 1.$$

(a) Find the marginal pdf of X and Y.

$$f(\mathbf{x}, \mathbf{y}) = 2, \quad 0 \le \mathbf{y} \le \mathbf{x} \le 1.$$

(b) Compute $\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \text{Cov}(X, Y)$, and ρ .

$$f(\mathbf{x}, \mathbf{y}) = 2, \quad 0 \le \mathbf{y} \le \mathbf{x} \le 1.$$

(c) Determine the equation of the least square regression line.

$$f(\mathbf{x}, \mathbf{y}) = 2, \quad 0 \le \mathbf{y} \le \mathbf{x} \le 1.$$

(a) Find the marginal pdf of X and Y.

(b) Compute $\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \text{Cov}(X, Y), \text{and } \rho$.

(c) Determine the equation of the least square regression line. Ans:

(a) $f_1(x) = 2x$ for $0 \le x \le 1$; $f_2(y) = 2(1-y)$; (b) $\mu_X = \mathbb{E}(X) = 2/3$ and $\mu_Y = \mathbb{E}(Y) = 1/3$.

Exercises from textbook: 4.2-1, 4.2-2, 4.2-3, 4.2-7, 4.2-9.